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Abstract— the unknown correspondences of measurements and 

targets, referred to as data association, is one of the main 

challenges of multi-target tracking.  Each new measurement 

received could be the continuation of some previously detected 

target, the first detection of a new target or a false alarm. Tracking 

3D cuboids, is particularly difficult due to the high amount of data, 

which can include erroneous or noisy information coming from 

sensors, that can lead to false measurements, detections from an 

unknown number of objects which may not be consistent over 

frames or varying object properties like dimension and 

orientation. In the self-driving car context, the target tracking 

module holds an important role due to the fact that the ego vehicle 

has to make predictions regarding the position and velocity of the 

surrounding objects in the next time epoch, plan for actions and 

make the correct decisions. To tackle the above mentioned 

problems and other issues coming from the self-driving car 

processing pipeline we propose three original contributions: 1) 

designing a novel affinity measurement function to associate 

measurements and targets using multiple types of features coming 

from LIDAR and camera, 2) a context aware descriptor for 3D 

objects that improves the data association process, 3) a framework 

that includes a module for tracking dimensions and orientation of 

objects. The implemented solution runs in real time and 

experiments that were performed on real world urban scenarios 

prove that the presented method is effective and robust even in a 

highly dynamic environment. 
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I.  INTRODUCTION  

Efficient and reliable perception is one of the core 

functions for representing the dynamic environment by 

autonomous vehicles.  The ability to effectively detect the 

surrounding traffic scenarios plays an important role for many 

of the self-driving car components such as collision avoidance, 

path planning or localization. In order to navigate successfully 

several complex situations have to be addressed. The most 

difficult being the crowded places where multiple static and 

dynamic objects are present which may exhibit various motion 

behaviors. For the problem of environment perception, the 

target tracking process is essential since provided 

measurements are useful only if they are filtered (not noisy) and 

identifiable in occluded situations such that higher level 

modules from the processing pipeline can transform each 

measurement in an actionable information.  

To address such complex scenarios which may occur 

in various weather conditions multiple types of complementary 

sensors are usually employed. Chiefly among them the LIDAR 

(Light Detection and Ranging) sensor is used because of its 

ability to provide an accurate position [1, 2].  Other sensors like 

stereo cameras can also be used because of their ability to 

provide the semantic class additionally to the position estimate 

of objects [3]. The main issue that appears with stereo sensors 

is that they may not work well in case of bad illumination, 

perspective effect or lack of texture among others [4]. Radars 

are another category of range sensors which are used in 

autonomous vehicles because of their long range detection 

ability and capacity to accurately detect motion.  The drawback 

of radars is that they have a reduced field of view and are not 

able to reliably detect static objects or objects made of porous 

plastic [5].  Modern perception and tracking architectures 

usually fuse all the available sensor data to obtain a more 

comprehensive understanding of the environment.  However 

one key aspect of any modern architecture is adaptability in case 

of sensor failure. In such a case the remaining sensors should 

be able to accurately detect and track the road objects. In this 

paper we address the problem of target tracking using a LIDAR 

sensor. 

We split the challenges of developing a robust tracking 

algorithm in three categories: high level processing pipeline 

related challenges, target tracking related issues and time 

constraints.  

The high-level processing pipeline challenges refers to 

the errors introduced in the target tracking module by the output 

provided by other modules from the self-driving car processing 

pipeline, inefficient sensor calibration or bad sensor 

synchronization. The general pipeline of the detection and 

tracking procedure includes steps like point cloud 

segmentation, candidate matching and motion estimation [6]. 

The quality of the point cloud segmentation algorithm impacts 

the quality of the tracking results. Existing methods in the 

literature work either on 2D [7] grid maps or 3D occupancy grid 

maps with higher computational burden [8]. Incorrect 

segmentation leads to a difficult candidate matching and 

tracking in a cluttered scenario. Some of the common issues of 

objects obtained by incorrect point cloud segmentation are 

change in appearance, unreliable dimensions and fluctuating 

positions in consecutive frames. 

 On the other hand, poor synchronization of LIDAR 

and camera may lead to bad point cloud projection in the image. 

Which may result in 3D points with an erroneous semantic 

class. In figure 1 we can see such a scenario. In the left-hand 

side of the image, we can observe the semantic class of each 

projected 3D LIDAR point in the semantic image. As we can 



intuitively see these points do not fall on the correct object 

which may infer a poor sensor synchronization or an erroneous 

motion correction.   

The second challenge refers to the issues one may have 

when developing a tracking algorithm. Such a challenge can 

include issues like the motion uncertainty, the origin 

uncertainty or the presence of heavy clutter among others. The 

motion uncertainty refers to the fact that real objects can have a 

complex motion that cannot be described by single motion 

model. One of the key challenges is represented by the data 

association step which aims to match identified targets to 

oncoming measurements in order to maintain the object 

identity. Mistakes made in the identity maintenance could result 

in a catastrophic failure in many high-level reasoning tasks. To 

obtain a highly accurate multi target tracking solution, a robust 

data association model and an accurate measure to compare 

detections over time is necessary. Popular data association and 

motion estimation methods include steps like feature-based 

matching followed by a filtering step using the Kalman or 

Extended Kalman filter. Lastly the time constraint refers to the 

fact that the target tracking module is useful only if it is running 

in real time. To address the above-mentioned issues in this 

paper we propose the following contributions: 

• The implementation of an affinity measurement 

function and the development of a positional descriptor that 

exploits multiple features coming from LIDAR, camera and 

from a semantic segmented image, to find the best track-

measurement correspondences 

• We modeled the tracking problem as a Markov 

decision process that improves the quality of the data 

association and tracking process 

• The inclusion of a module for filtering the orientation 

and dimension properties of tracked objects 

The rest of the paper is organized as follows: In section II 

we overview the literature on data association and tracking and 

in Section III, the proposed solution is described. In Section IV 

we evaluate the obtained results using multiple metrics. Section 

V concludes the paper. 

II. RELATED WORK 

Existing tracking algorithms aim to model the environment 

at different abstraction levels, depending on the complexity of 

the surrounding world. Many video-based tracking solutions 

have been developed in recent years due to the low cost and 

availability of the video sensors [9, 10]. The problem with 

video-based tracking resides in the fact that all of these methods 

can be affected by environmental conditions such as weather or 

illumination. On the other hand, 3D LIDARs are not affected 

by the illumination conditions, the scale of their measurements 

are uniform despite their distance, and due to technological 

advancement, the sensors are becoming more affordable. An 

approach used in the research literature is the probabilistic data 

association (PDA) [11] filter which does not rely on a single 

measurement to estimate the state and covariance of an object 

but uses the set of validated measurements. Variations of the 

algorithm include the joint PDA [12] used in handling multiple 

targets or the integrated PDA in which the data association 

probability and the track existence are estimated jointly [13]. 

The JPDA (Joint Probabilistic Data Association) filter can 

exhibit poor performance when the objects are close to each 

other. Another class of more powerful algorithms use variations 

of algorithms like the multiple hypothesis tracking (MHT) [14, 

15] to solve the multiple target tracking. This MHT solution 

retains all possible data association hypothesis until there is 

enough information to resolve the ambiguities that occurred in 

older associations. The issue with MHT is that the algorithm is 

computationally more expensive compared to JPDA or GNN.  

Some methods model objects at a higher level of abstraction 

using oriented cuboids [16] or L shaped models [17] due to the 

simplicity in which cars, pedestrians or other road users can be 

represented. The box representation is unable to represent 

complex structures like infrastructure or vegetation, yet it is 

often used due to the simplicity of implementation and high 

running time which is necessary in large computational 

pipelines. In order to improve the performance of the detection 

and tracking algorithm, various solutions try to find a tradeoff 

between more sophisticated representations and computational 

efficiency. For example, in [18] the dynamic objects are 

modeled as deforming contours, in [19] individual 3D points 

are tracked and in [20] boxes with adaptive sizes are used.   

The task of improving the data association process has led 

some researchers to fuse the information coming from a camera 

with the 3D points.  In this regard Held et al. [21] fused a 3D 

point cloud with a color image to obtain a colored 3D point 

cloud. The authors have used the 3D shape and color data to 

reconstruct and track the objects. They have showed that the 

usage of multiple features leads to an overall better velocity and 

position estimate.  In [22] Asvadi et al. propose a 3D object 

tracking algorithm using a 3D LIDAR, an RGB camera and an 

GPS/IMU sensor. The solution starts with a known initial 3D 

bounding box for an object and then two parallel mean-shift 

algorithms are applied for object detection and localization in 

the 2D image and 3D point cloud, followed by a robust 2D/3D 

Kalman filter based fusion and tracking.  

 
Fig.1 Erroneous semantic class of point cloud projection 



Other solutions use particle filter to estimate shape, velocity 
and object movement. The particles are independent instances 
each having their own position and velocity. In [23] the particle 
filter is employed to estimate velocities, while [24] applies a mix 
of static and dynamic particles to estimate position and 
velocities. In general grid-based tracking solutions are not able 
to accurately estimate the state of cells belonging to a large 
uniform area, and this leads to higher uncertainty due to 
incorrect data association. In [25] the authors present an 
interesting tracking solution that performs a probabilistic 
hierarchical object association based on 3D information 
provided by a stereo camera and optical flow data. This solution 
relies heavily on image quality to detect, associate and track 
objects and it is not suitable for scenarios with adverse weather 
conditions.    

III. PROPOSED SOLUTION 

      The most challenging aspect of object tracking is arguably 

that the associations between measurements and objects is 

unknown. The objective of multi-object tracking is to compute 

the posterior density as fast and as reliable as possible for each 

object of interest.  Considering that the sensor, measurement 

and motion models are linear and Gaussian, the exact posterior 

density can be expressed as a Gaussian mixture with one term 

for every association at time k as seen in equation 1. The 

term 𝑤𝑘|𝑘
𝜃1:𝑘 is a probability mass function which denotes the 

probability of association to a measurement and 𝑃𝑘|𝑘
𝜃1:𝑘  

represents a probability density function. We denote the fact 

that the Gaussian mixture spans over all associations that fall in 

the covariance ellipse of a target by the sum ∑𝜃1:𝑘  

            𝑃𝑘|𝑘(𝑋𝑘) =  ∑ 𝑤𝑘|𝑘
𝜃1:𝑘𝑃𝑘|𝑘

𝜃1:𝑘
𝜃1:𝑘 (𝑋𝑘)                (1) 

We try to find the best measurement association for each 

target, 𝜃∗ and prune all other associations that are situated in the 

covariance ellipse of the target object in a global nearest 

neighbor manner. Finding a single association will give a 

computationally cheap algorithm which can meet the real time 

performance requirement of a self-driving car. The posterior 

density can be approximated by 𝑃𝐾|𝐾
𝐺𝑁𝑁(𝑋𝑘) in (2), where 𝜃1:𝑘

∗  is 

the sequence of optimal data associations from time 1 to time k  

   𝑃𝐾|𝐾
𝐺𝑁𝑁(𝑋𝑘) = 𝑃𝐾|𝐾

𝜃1:𝑘
∗

(𝑋𝑘)           (2) 

In order to make sure that an association is more probable, the 

correspondence between a measurement and a hypothesis is 

done using many aggregated features which will be described 

shortly. For the prior densities that are Gausian and the 

measurement model is linear and Gausian the Kalman update 

and prediction rules are used to find the posterior densities. 

Otherwise we linearize the predicted density using the sigma 

point sampling and the Unscented Kalman Filter for the update 

and prediction of the next state. The general pipeline of the 

tracking process is illustrated in figure 1.  Two motion models 

were used in order to achieve a better modeling of the road users 

motion behavior. The motion models used are CTRV (constant 

turn rate and velocity model) and the CV (constant velocity 

model).  

A. Data association score 

1) Aggregated Affinity score 

In order to select the best measurement correspondent to a 

target, multiple discriminant features have to be considered. In 

general, the task of feature selection is a challenging endeavor. 

The choice of features varies depending on the tracking 

application. For example, in order to track an object which is 

very small, the centroid feature is usually used. On the other 

hand, for large objects a combination of various features may 

be more advantageous.   

      In this work, the object association position is considered 

by using the coordinates of the nearest corner, visible to the ego 

vehicle. Furthermore, a 3-channel reduced color histogram is 

used for each object. The color histogram has 8 bins per 

channel, and it is obtained by projecting the 3D points that 

correspond to an object onto the front RGB image.  Each 3D 

point that falls in the image casts a vote in a specific bin from a 

channel inside the color histogram of the object. Each bin of the 

histogram can store 32 intensity values. The color score is 

computed as presented in equation (3). 

𝐶𝑜𝑙𝑜𝑟𝐸𝑅𝑅𝑂𝑅 = 𝑅𝑀𝑆(𝐿𝐼𝐷𝐴𝑅. 𝑅, 𝑇𝑟𝑎𝑐𝑘. 𝑅) +
𝑅𝑀𝑆(𝐿𝐼𝐷𝐴𝑅. 𝐺, 𝑇𝑟𝑎𝑐𝑘. 𝐺) +
 𝑅𝑀𝑆(𝐿𝐼𝐷𝐴𝑅. 𝐵, 𝑇𝑟𝑎𝑐𝑘. 𝐵)                                     (3) 

 
Fig. 2. Processing pipeline for obtaining the posterior N object density 

 

 

 

 



RMS is the root mean square metric defined by equation (4), 

where COL.HIST. BINS is the number of bins of the color 

histogram for each channel. 

 

       RMS𝑒𝑟𝑟𝑜𝑟 =
1

𝐶𝑂𝐿.𝐻𝐼𝑆𝑇.𝐵𝐼𝑁𝑆
∑ (𝑣𝑒𝑙𝑜𝐻𝑖𝑠𝑡(𝑖) −𝐶𝑂𝐿.𝐻𝐼𝑆𝑇.𝐵𝐼𝑁𝑆

𝐼=0

𝑡𝑟𝑎𝑐𝑘𝐻𝑖𝑠𝑡(𝑖) )2                    (4) 

The point cloud that corresponds to a measurement is also 

projected onto a semantic segmentation image, obtained using 

the ERF neural net [26] such that, semantic class is also 

extracted for each object. Since the semantic segmentation 

image is not perfect and the point projections may not fall 

entirely on the desired object in the image, due to motion or 

synchronization errors, the most probable 3 semantic classes are 

used together with their probabilities (5).  

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝐶𝑜𝑠𝑡 =

 ∑ {
0, 𝑖𝑓 𝑤[𝑖] =  −1                                                      

|𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡. 𝑃(𝑖) − 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠. 𝑃(𝑤[𝑖])|
3
𝑖=0             (5) 

In equation (5), w[i] takes the value of the position where 

semantic class of the hypothesis matches the semantic class of 

the measurement. If there is no class in the target that should 

match the semantic class of the measurement, w[i] takes the 

value -1. The symbol |a| refers to the absolute value of a. If two 

objects are similar the combined color and semantic 

segmentation cost will be very low (close to zero in case the 

two objects are identical). The cost function has been 

implemented such that two similar objects have a very high 

similarity score. Due to the fact that semantic and color 

information may become unreliable in case of bad weather 

conditions, we are taking the inverse of the computed scores for 

the features generated using a camera. The proposed 

methodology of computing the association score has the 

advantage that in adverse weather conditions when the camera 

information is no longer reliable, the terms in the score function 

corresponding to image and semantic segmentation will have a 

very low weight, and the final score will be computed based 

mostly on geometric features extracted from the LIDAR 

objects. 

 Geometric properties such as object area, width, length 

and measurement-hypothesis overlapping are extracted, and 

used (6) for eliminating candidates that are not similar to the 

compared object.  

    𝑜𝑏𝑗𝑒𝑐𝑡𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑖,𝑗 =
𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝐴𝑟𝑒𝑎𝑖,𝑗

|𝑎𝑟𝑒𝑎𝐿𝐷𝐼𝐴𝑅𝑖−𝑎𝑟𝑒𝑎𝑇𝑟𝑎𝑐𝑘𝑗|
          (6)  

Finally, we also use the cuboid orientation, because, we 

reason that object orientation cannot change drastically from 

one frame to the other (7). 

𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑡𝑦 = |𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 −
𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑇𝑎𝑟𝑔𝑒𝑡|                                                             (7) 

The final association score for a measurement, hypothesis 

pair is obtained by summing the values obtained in equations 

(3), (4), (5), (6) and (7) and weighting it by the distance 

(denoted by wd) between the measurement and target. The 

closer the target is to the measurement, the more reliable the 

aggregated score is. This aggregated score (AgSc) (8), which 

can also be considered the weight (𝑤𝜃𝑖,𝑗) of the measurement i 

– target j association for a validated measurement in the target 

covariance ellipse, is added to the cost matrix. 

𝐴𝑔𝑆𝑐𝑖,𝑗 = (|
1

𝐶𝑜𝑙𝑜𝑟𝐸𝑅𝑅𝑂𝑅𝑖,𝑗+0.001
| + |

1

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝐶𝑜𝑠𝑡𝑖,𝑗+0.001
| +

𝑜𝑏𝑗𝑒𝑐𝑡𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑖,𝑗 + 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑖,𝑗) /𝑤𝑑      (8) 

2) Positional Descriptor (PD) 

A positional descriptor is used to better describe the 

relation between the neighborhood of each target and 

measurement. We make an assumption that the neighborhood 

of a measurement and its corresponding target should be similar 

to a certain degree. The PD descriptor is computed as a sum 

over the ColorERROR (CE) differences and objectDimension 

(OD) differences of a target vehicle and its neighboring target 

vehicles in a vicinity around the target up to 10 m (9). A similar 

step is performed for each descriptor.  

𝑃𝐷(𝑡𝑎𝑟𝑔𝑒𝑡𝑖) =  ∑  (𝐶𝐸𝑖 − 𝐶𝐸𝑗  +  𝑂𝐷𝑖 −
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑖𝑛𝑔𝑇𝑎𝑟𝑔𝑒𝑡𝑠
𝑗=0

𝑂𝐷𝑗  )                   (9) 

The same positional descriptor is also computed for each 

measurement. The difference between the track positional 

descriptor and the measurement descriptor should be as small 

as possible for similar objects. The difference is added to the 

overall aggregated score. In case there is no available descriptor 

a penalty value is added to the final score (10).  The penalty 

value has been found experimentally.  

𝐴𝑔𝑆𝑐𝑖,𝑗 = 

{
𝑃𝐷𝑡𝑎𝑟𝑔𝑒𝑡𝑖 − 𝑃𝐷𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑗 , 𝑖𝑓 ∃ 𝑃𝐷𝑡𝑎𝑟𝑔𝑒𝑡𝑖 , 𝑃𝐷𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑗

 𝑃𝑒𝑛𝑎𝑙𝑡𝑦, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                            
 (10) 

    To describe the data association, we use the letter Θ , 

measurements are symbolized with the letter z and i is the 

position of the measurement in the queue where the gated 

measurements are stored (11). 

  Θ = {
𝑖 > 0, 𝑖𝑓 𝑧𝑖  𝑖𝑠 𝑎𝑛 𝑜𝑏𝑗𝑒𝑐𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

0,  𝑖𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 𝑖𝑠 𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑    
      (11) 

The goal of the optimal assignment stage of the tracking 

processing pipeline is to find a sequence Θ∗ = [Θ1 Θ2 … Θ𝑛] 
such that the sum of negative log weights (12) is minimized. 

      𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ −log (𝑤𝜃𝑖,𝑗)𝑛
𝑖=0         (12) 

The optimal assignment can be achieved using the Hungarian 

[27] or Auction [28] algorithms, and will not be discussed in 

this paper. 

B. The tracking processes 

1) Tracking as a Markov Decision Process 

In this section we introduce a Markov decision process 

formulation of the lifetime of a single target in the tracking 

process. The MDP consists of the tuple (S, A, T(*), R(*)): 

▪ The target state s Є S encodes the status of the 

hypothesis 

▪ The action a Є A, represents the action which can be 

performed to the target 

▪ The state transition function T: SxA → S describes the 

effect of each action in each state 

▪ The reward function is a real-valued function that 

defines the immediate reward received after executing 

action a in state s; R: SxA → ℝ 

     The state space contains five states: Initialized, Processed, 

Updated, Drifting and Absolute Death. Figure 3 shows the 



transition between the five states. Beside the five states the 

target also memorizes other information such as RGB 

appearance, geometry, semantic class, orientation, velocity, 

localization, size, history and others.  

    Initialized is the first state of any hypothesis, in this state no 

action is performed on the target. Whenever an object is 

detected by the object detector it enters the Initialized state.  In 

the second state, Processed, a target was associated to a new 

measurement based on an affinity score. In this state, the MDP 

needs to decide whether to keep tracking the target or transfer 

it to a drifting state. If the track is associated in the next frame 

it is transferred into the third state. A track falls in the state, 

Updated, when it is constantly updated using the incoming 

measurements. If a hypothesis is updated for a number of three 

frames while being in the Updated state, the track is labeled 

stable and it is displayed. When a hypothesis has not been 

associated to any measurement for a number of three frames it 

enters the fourth state, the drifting state, and will not be 

displayed until new successful association are found in the next 

frames. The track is not removed because the target may be lost 

due to some reason, such as occlusion, or disappearance from 

the field of view. Finally, if a target has not been associated for 

a number of 15 frames, it has left the area of interest, or a time 

of 2 seconds has elapsed since it was last updated it will enter 

state five, absolute death, and it will be removed as soon as 

possible. 

In the current MDP all the actions are deterministic, 

i.e. given the current state and an action we can figure the new 

state for the target. The actions which determine the transitions 

between states are given by the data associations and their 

number. For example, if a target object is in state 1 and there 

has been a successful association in the next frame, the internal 

state will transition to state 2 otherwise it will fall in state 4. In 

state 1 and 2 the object receives a unitary reward, while in state 

3 each time the target is successfully associated a unit is added 

to the target reward.  No rewards are given in state 4 and 5. 

2)  Prediction and update of target states 

The target state has the following constituents: the target 

position on the x and y dimensions, the velocity, the yaw and 

the yaw rate (13). 

                                      𝑋𝑘 =

[
 
 
 
 
𝑝𝑥
𝑝𝑦
𝑣
𝛹
𝛹̇ ]

 
 
 
 

                                    (13) 

We are considering two motion models and a 

collaboration scheme that links the two models. The objects are 

tracked independently using the CTRV and the CV motion 

models. The results are then combined using a collaboration 

strategy based on the orientation as described in [4]. For 

tracking objects using the CV motion model, we are using the 

classical Kalman prediction and update rules. On the other 

hand, tracking objects having the non-liner motion model, 

CTRV, requires the usage of the Unscented Kalman filter. The 

process functions in the UKF depend on the type of motion 

used. In case the yaw angle is not 0, the process model can be 

seen in (14). 

𝑋𝑘+1 = 𝑋𝑘 + 

[
 
 
 
 
 

vk

𝛹𝑘̇
(sin(𝛹𝑘 + 𝛹𝑘̇ ∆𝑡) − sin (𝛹𝑘))

vk

𝛹𝑘̇
(− cos(𝛹𝑘 + 𝛹𝑘̇ ∆𝑡) +  sin (𝛹𝑘))

0
𝛹𝑘̇ ∆𝑡

0 ]
 
 
 
 
 

 

[
 
 
 
 
 
 
1

2
(∆𝑡)2 cos(𝛹𝑘) 𝛾𝑎,𝑘

1

2
(∆𝑡)2 sin(𝛹𝑘) 𝛾𝑎,𝑘

∆𝑡𝛾𝑎,𝑘
1

2
(∆𝑡)2𝛾𝛹̈,𝑘

∆𝑡𝛾𝛹̈,𝑘 ]
 
 
 
 
 
 

 (14) 

For rectilinear motion the state transition equation is described 

in (15) 

𝑋𝑘+1 = 𝑋𝑘 + 

[
 
 
 
 
𝑣𝑘cos (𝛹𝑘)∆𝑡

𝑣𝑘sin(𝛹𝑘)∆𝑡
0

𝛹̇∆𝑡
0 ]

 
 
 
 

+  

[
 
 
 
 
 
 
1

2
(∆𝑡)2 cos(𝛹𝑘) 𝛾𝑎,𝑘

1

2
(∆𝑡)2 sin(𝛹𝑘) 𝛾𝑎,𝑘

∆𝑡𝛾𝑎,𝑘
1

2
(∆𝑡)2𝛾𝛹̈,𝑘

∆𝑡𝛾𝛹̈,𝑘 ]
 
 
 
 
 
 

 (15) 

The UKF manages to recover the Gaussian density by 

propagating a set of sigma-points through the non-linear 

process function. The covariance matrix is recovered by 

using the sigma points and a set of weights, which have 

the role of inverting the spread of the sigma points (16) 

and (17). These weights depend on the spreading 

parameter lambda.  

𝑤𝑖 =  
𝜆

𝜆+𝑛𝑎
 , 𝑖 = 0         (16)     

𝑤𝑖 =  
1

2(𝜆+𝑛𝑎)
 , 𝑖 = 2, … , 𝑛𝑎             (17) 

The state mean and covariance are predicted using 

equations (18) and (19) below. 

                          𝑋𝑘+1|𝐾 = ∑ 𝑤𝑖𝑋𝑘+1|𝑘,𝑖
𝑛𝜎
𝑖=1          (18) 

   𝑃𝑘+1|𝐾 = ∑ 𝑤𝑖(𝑋𝑘+1|𝑘,𝑖 − 𝑥𝑘+1|𝑘) (𝑋𝑘+1|𝑘,𝑖 − 𝑥𝑘+1|𝑘)𝑇 
𝑛𝜎
𝑖=1     (19) 

Due to the fact that the measurement model is linear and 

Gaussian the update step is performed as described in the 

classical Kalman filter as described in (20), (21) and (22). 

 

𝐾 = 𝑃𝑘𝐻
𝑇( 𝐻𝑃𝑘𝐻

𝑇 + 𝑅)−1       (20)        

𝑋𝑘 = 𝑋𝑘 + 𝐾(𝑧𝑘 − 𝐻𝑋𝑘)        (21) 

𝑃𝑘 = (𝐼 − 𝐾𝐻)𝑃𝑘         (22) 

In equation 20, K is the Kalman gain, 𝑋𝑘 is the state of the 

target at time step k and 𝑃𝑘is the covariance at time k. 

 
Fig. 3. State transition process 



C. Filtering meta parameters 

Parameters such as the width, height and orientation of a 

cuboid are referred to as meta parameters and are filtered in a 

separate module. The reason for doing this is that the three 

measured parameters fluctuate very violently in consecutive 

frames due to object segmentation problems.  

The usage of these parameter in the state vector presented 

in equation (11) would compromise other values that might 

depend on them, for example the object position. A view of the 

object tracking module can be seen in figure 4.  

The state vector for the meta parameters tracker is illustrated in 

(23). 

         𝑋𝑘 = [

𝛹
𝛹̇

𝑤𝑖𝑑𝑡ℎ
𝑙𝑒𝑛𝑔𝑡ℎ

]                        (23)      

      The transition equations for each member parameter are 

depicted in (24), (25) and (26) below      

        𝛹𝑘 = 𝛹𝑘 + (𝛹̇)
𝑘+ 1

∆𝑡𝑘+1                  (24) 

        𝑤𝑖𝑑𝑡ℎ𝑘 = 𝑤𝑖𝑑𝑡ℎ𝑘 + (𝑤𝑖𝑑𝑡ℎ𝑘+1 − 𝑤𝑖𝑑𝑡ℎ𝑘)              (25) 

      𝑙𝑒𝑛𝑔𝑡ℎ𝑘 = 𝑙𝑒𝑛𝑔𝑡ℎ𝑘 + (𝑙𝑒𝑛𝑔𝑡ℎ𝑘+1 − 𝑙𝑒𝑛𝑔𝑡ℎ𝑘)          (26)  

The Kalman filter is used to update and predict the next 

state for the meta parameters. The collaboration strategy 

between the tracked target state and the meta-parameter state is 

based on the level of maturity of each track, i.e. the number of 

successful associations. After computing the correspondence 

between the hypothesis obtained by each motion model as 

described in [4] the level of maturity analogous to the meta- 

parameters, is checked.  The targets that have a higher level of 

maturity will be accorded a higher weight. The final orientation 

will be a weighted sum of the orientations obtained in the meta 

parameters associated to each motion model and the one 

inferred by the UKF as seen in (27). 

𝑓𝑖𝑛𝑎𝑙𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 =  𝑤1 ∗  𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑢𝑘𝑓𝐼𝑛𝑓𝑒𝑟𝑒𝑑  +  𝑤2 ∗

 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑉𝑚𝑒𝑡𝑎
+  𝑤3 ∗ 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛_𝐶𝑇𝑅𝑉𝑚𝑒𝑡𝑎 (27) 

IV. EXPERIMENTAL RESULTS 

In this section we will evaluate the results of the 

proposed solution with respect to two metrics MOTA (Multiple 

Tracking Accuracy) and MOTP (Multiple Object Tracking 

Precision). The system on which the method was tested 

contains an Intel i5-2500 CPU with 3 GHz frequency. The 

running time of the solution is 80ms. The characteristics of the 

16L LIDAR, used to detect the objects, are illustrated in Table 

I bellow.  

        Table I. LIDAR characteristics 

    We have evaluated the proposed solution on 3000 frames, 

having objects with multiple classes.  

     To indicate the performance of a tracker, MOTA combines 

true positives, true negatives and ID switch (28). By t we 

indicate the timestamp and by GT we refer to the ground truth. 

The value of MOTA can also be negative if the number of errors 

exceeds the number of good object detections. 

                      𝑀𝑂𝑇𝐴 = 1 −
∑ 𝐹𝑁𝑡+𝐹𝑃𝑡+𝐼𝐷𝑆𝑊𝑡𝑡

∑ 𝐺𝑇𝑡𝑡
                      (28) 

The MOTP metric, on the other hand refers to the averaged 

differences between true positives and ground truth. It gives the 

average overlap between the correctly identified tracks and the 

detected objects.  

𝑀𝑂𝑇𝑃 =
∑ 𝑑𝑡,𝑖𝑡,𝑖

∑ 𝑐𝑡𝑖
             (29) 

In (29), 𝑐𝑡  denotes the amount of tracker target match in frame 

t and 𝑑𝑡,𝑖 is the bounding box overlap between tracked target i 

and the ground truth object. The scores of the evaluation are 

displayed in table II. The evaluation sequence has been 

recorded in the VW campus. It contains sequences in clear and 

rainy weather. The implemented solution is part of a bigger 

pipeline and it has been tailored to suit the needs of the general 

pipeline.  

Table II. Tracking results 

Metrics Value 

MOTA 86.86 % 

MOTP 85.39 % 

IDSW (sum) 130 

Total Frames 3000 

Total Objects 14317 

      The results indicate a relatively high degree of accuracy and 

precision for the tracker. The highest miss-rate as has been 

observed for fragmented objects, which present sporadic 

fluctuations with respect to their dimensions, fragmentation, 

Features 

Time of flight distance measurement with calibrated 

reflective 

16 channels 

Measurement range up to 100m 

Accuracy +/- 3cm 

Dual returns 

Field of view (vertical): 30° (+15° to -15°) 

Angular resolution (vertical): 2° 

Field of view (horizontal/azimuth): 360° 

Angular resolution (horizontal/azimuth): 0.1° - 0.4° 

Rotation rate: 5 - 20 Hz 

 
Fig.4. Components belonging to a tracked object 



semantic class and position. It is important to mention the fact 

that the quality of the tracker depends on the quality of the 

segmentation and the input. In table III a comparison is 

presented with the traditional GNN and JPDA algorithm on the 

same dataset.  

Table III. Tracking comparison 

Name MOTA (%) MOTP (%) 

Proposed Solution 86.86 85.39 

JPDA 78.3 77.5 

GNN 72.13 70.84 

       In figure 5 the measurements are illustrated with blue color 

and the corresponding hypothesis are depicted with red.  The 

height of all the cuboids is received from the segmentation 

module and it is the same for all objects (2m). 

      In figure 6 we observe the motion vector of an incoming 

vehicle as well as its trace in the right image. The ID of each 

object has been depicted with a different color in the right-hand 

side image.  

Figure 7 depicts another scenario, when the ego vehicle is 

at an intersection near a parking lot.  In the upper part of the 

figure the segmentation image is overlapped over the intensity 

image. The lower part of the image graphically depicts the 

trails left by the targets that are approaching the ego vehicle 

with a speed similar to the ego but with negative sign.   

Figure 8 illustrates the 3D cuboid measurements and 

targets with the corresponding motion vectors of the same 

scenario depicted as in figure 7.  

Comparison with state-of-the-art methods is very difficult 

due to the fact that the proposed solution has been tailored to 

work with a particular input type used in the current project. 

Furthermore, the proposed method is implemented as a generic 

solution, being able to track any type of cuboid as long as it 

comes in the correct format, and contains all the required data.  

V. CONCLUSION 

This paper presented a novel multi-object tracking 

framework based on a Markov decision process, where the 

lifetime of an object is modeled with five states (Initialized, 

Processed, Updated, Drifting and Absolute Death). 

Furthermore, we presented a data association affinity function, 

which is based on multiple aggregated features like color, 

semantic class, geometric properties, orientation and positional 

 
Fig. 6. Motion vector and target ID trail 

 
Fig. 7. Semantic Segmentation image and target ID trails 

 
Fig. 8. Targets and measurements in a crowded 

intersection 

 
Fig. 5. Measurements and corresponding tracks 

 



descriptor. The proposed data association score is able to make 

a good differentiation between objects that are similar or 

clustered even when some of the extracted features are 

inconsistent over consecutive frames. Two motion models were 

used to deal with the motion uncertainty and to describe the 

motion behavior of the tracks, the CTRV and the CV models. 

Our last contribution in this paper was a module for filtering the 

meta parameters like object dimensions and orientation. The 

rationale for making a separate module for the meta parameters 

is that, due to the violent fluctuations of meta parameters, 

variables that depend on these parameters would start to 

fluctuate as well which would lead to more problems overall. 

Therefore, a combination of the tracked meta parameters and 

the inferred ones using the two motion models offered a better 

result. The proposed solution runs in real time and was 

evaluated using MOTA and MOTP object tracking metrics 

achieving good results. 
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